Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 9(6)2019 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181869

RESUMO

Aeromonas veronii strain A134 was isolated from Microcystis aeruginosa colonies collected from Lake Kinneret (Sea of Galilee), Israel. The Aeromonas culture media inhibited the growth of M. aeruginosa (strain MGK). The crude extract of a large-scale culture of A. veronii A134 was separated in a few chromatographic steps to yield three new secondary metabolites, 9-chlorolumichrome (1), veronimide (2) and veronipyrazine (3), along with a known lumichrome and several known diketopiperazines. The structures of the new compounds were established by analyses of the data from 1D and 2D NMR experiments and HRMS data of the compounds, as well as a single-crystal x-ray analysis of synthetic 1. The structure elucidation and proposed biogenesis of the new compounds are described below.

2.
Environ Microbiol ; 21(3): 1140-1150, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30761715

RESUMO

Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.


Assuntos
Aeromonas veronii/fisiologia , Microcystis/fisiologia , Aeromonas/fisiologia , Antibiose/fisiologia , Meios de Cultura , Lagos/microbiologia , Microcystis/metabolismo
3.
Oncotarget ; 7(31): 50258-50276, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384680

RESUMO

In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rß as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rß but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Poríferos/química , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor IGF Tipo 1/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Transdução de Sinais , Tirfostinas/farmacologia
4.
J Antimicrob Chemother ; 71(4): 946-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26747101

RESUMO

OBJECTIVES: During recent decades, the number of invasive fungal infections among immunosuppressed patients has increased significantly, whereas the number of effective systemic antifungal drugs remains low and unsatisfactory. The aim of this study was to characterize a novel antifungal compound, CW-8/haemofungin, which we previously identified in a screen for compounds affecting fungal cell wall integrity. METHODS: The in vitro characteristics of haemofungin were investigated by MIC evaluation against a panel of pathogenic and non-pathogenic fungi, bacteria and mammalian cells in culture. Haemofungin mode-of-action studies were performed by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring plasmids and biochemical validation of the target. In vivo efficacy was tested in the Galleria mellonella and Drosophila melanogaster insect models of infection. RESULTS: We demonstrate that haemofungin causes swelling and lysis of growing fungal cells. It inhibits the growth of pathogenic Aspergillus, Candida, Fusarium and Rhizopus isolates at micromolar concentrations, while only weakly affecting the growth of mammalian cell lines. Genetic and biochemical analyses in A. nidulans and Aspergillus fumigatus indicate that haemofungin primarily inhibits ferrochelatase (HemH), the last enzyme in the haem biosynthetic pathway. Haemofungin was non-toxic and significantly reduced mortality rates of G. mellonella and D. melanogaster infected with A. fumigatus and Rhizopus oryzae, respectively. CONCLUSIONS: Further development and in vivo validation of haemofungin is warranted.


Assuntos
Antifúngicos/farmacologia , Heme/antagonistas & inibidores , Heme/biossíntese , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Animais , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Farmacorresistência Fúngica , Sinergismo Farmacológico , Ferroquelatase/antagonistas & inibidores , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Insetos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Protoporfirinas/biossíntese
5.
Mol Cancer Ther ; 13(12): 2941-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319389

RESUMO

Marine-derived compounds have been explored and considered as possible antitumor agents. In this study, we analyzed extracts of the sponge Cribrochalina vasculum for their ability to inhibit tumor cell proliferation. Screening identified two acetylenic compounds of similar structure that showed strong tumor-specific toxicity in non-small cell lung carcinoma (NSCLC) cells and small-cell lung carcinoma cells, and less prominent toxicity in ovarian carcinoma, while having no effect on normal cells. These acetylenic compounds were found to cause a time-dependent increase in activation of apoptotic signaling involving cleavage of caspase-9, caspase-3, and PARP, as well as apoptotic cell morphology in NSCLC cells, but not in normal fibroblasts. Further analysis demonstrated that these compounds caused conformational change in Bak and Bax, and resulted in loss of mitochondrial potential and cytochrome c release in NSCLC cells. Moreover, a decreased phosphorylation of the growth factor signaling kinases Akt, mTOR, and ERK was evident and an increased phosphorylation of JNK was observed. Thus, these acetylenic compounds hold potential as novel therapeutic agents that should be further explored for NSCLC and other tumor malignancies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Poríferos/química , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...